
期刊简介
《局解手术学杂志》是局部解剖学与临床手术学相结合的杂志。办刊宗旨是传播解剖学和外科学的基础理论和实用技术,为解剖学和外科学学者提供局部解剖学、应用解剖学、断层解剖学及临床各手术学科的学术交流平台,着重反映局部解剖学与手术学的科研教学成果、临床经验、新技术和新方法,促进解剖学和外科学学术交流和人才培养。
《局解手术学杂志》是适应解剖学、外科学迅速发展而创办的特色刊物,是报道局部解剖与手术学内涵联系的学术性杂志。本刊不仅包括局部解剖学、应用解剖学、断面解剖学,而且还涉及临床各手术学科的领域,其学术范围宽、覆盖面广。杂志着重介绍局部解剖与手术学的科研成果、临床经验、新技术和新方法,促进学术交流和人才培养,指导和提高专业的学术水平和技术能力。杂志办刊十七年来在医学界,尤其在解剖学界和外科学界深入人心,影响很大,备受读者青睐,有力地促进了本专业领域的学术交流、医疗技术的提高和中青年教师、临床医师的培养和成长。在知识经济和科技创新时代,当好先进知识和技术传播舆论工具与喉舌作用,促进医学的发展。使更多的院校、医疗单位、广大医务人员,可以从本刊获得新知识和技术,接受新信息,提高充实自己,为医学科学发展和社会进步做出更大贡献。
人工智能在医学影像诊断中的研究进展与临床应用
时间:2025-08-22 15:39:45
核心主题
AI辅助诊断在肺结节、乳腺肿瘤、脑卒中影像中的诊断效能及临床转化瓶颈
结构框架
1. 摘要
目的:系统评价深度学习算法在胸部CT、乳腺钼靶、头颅MRI诊断中的敏感性、特异性及临床实用性
方法:检索PubMed、Cochrane Library、中国知网2019-2024年文献,采用QUADAS-2工具评价文献质量,Stata 17.0进行Meta分析
结果:纳入58项研究(12万例患者),AI对肺结节诊断的合并AUC为0.94(95%CI:0.92-0.96),乳腺肿瘤诊断敏感性0.91(0.88-0.93),但基层医院临床采纳率仅32.6%
结论:AI影像诊断效能接近资深放射科医师,但在数据标准化、模型可解释性、医保政策配套等方面存在转化障碍
2. 关键词
人工智能;医学影像;深度学习;诊断准确性;系统综述
3. 正文大纲
引言:引用《自然医学》数据指出全球放射科医师缺口达40%,AI可能成为解决方案
技术原理:简述卷积神经网络(CNN)、Transformer模型在影像特征提取中的应用
临床证据:分部位阐述AI诊断性能(肺结节、乳腺肿瘤、脑卒中),对比不同算法(如3D-CNN vs 2D-CNN)的优势
转化瓶颈:分析数据孤岛(多中心数据共享率<15%)、模型泛化性(跨设备准确率下降12%-25%)、法律责任界定等问题
未来方向:联邦学习技术、AI+医师协同诊断模式、监管审批路径建议
4. 参考文献建议
Litjens G, et al. (2022). Deep learning as a tool for increased accuracy and efficiency in medical imaging. Nat Med.
国家药监局. (2024). 医疗器械软件审评技术指导原则.